Transient behavior of fractional queues and related processes

نویسندگان

  • Dexter O. Cahoy
  • Federico Polito
  • Vir Phoha
چکیده

We propose a generalization of the classical M/M/1 queue process. The resulting model is derived by applying fractional derivative operators to a system of difference-differential equations. This generalization includes both non-Markovian and Markovian properties which naturally provide greater flexibility in modeling real queue systems than its classical counterpart. Algorithms to simulate M/M/1 queue process and the related linear birth-death process are provided. Closed-form expressions of the point and interval estimators of the parameters of the proposed fractional stochastic models are also presented. These methods are necessary to make these models usable in practice. The proposed fractional M/M/1 queue model and the statistical methods are illustrated using financial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Order Control of Micro Electro-Mechanical Systems

This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...

متن کامل

Fractional Order Control of Micro Electro-Mechanical Systems

This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...

متن کامل

Longest Path in Networks of Queues in the Steady-State

Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...

متن کامل

On the Convergence of MMPP and Fractional ARIMA Processes with Long-Range Dependence to Fractional Brownian Motion

Though the various models proposed in the literature for capturing the long-range dependent nature of network traac are all either exactly or asymptotically second order self-similar, their eeect on network performance can be very diierent. We are thus motivated to characterize the limiting distributions of these models so that they lead to parsimonious modeling and a better understanding of ne...

متن کامل

An extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative

Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013